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We analyze the spectral properties of a resonator coupled to a superconducting single-electron transistor
�SSET� close to the Josephson quasiparticle resonance. Focusing on the regime where the resonator is driven
into a limit-cycle state by the SSET, we investigate the behavior of the resonator linewidth and the energy
relaxation rate which control the widths of the main features in the resonator spectra. We find that the linewidth
becomes very narrow in the limit-cycle regime, where it is dominated by a slow phase-diffusion process, as in
a laser. The overall phase-diffusion rate is determined by a combination of direct phase diffusion and the effect
of amplitude fluctuations which affect the phase because the resonator frequency is amplitude dependent. For
sufficiently strong couplings we find that a regime emerges where the phase diffusion is no longer minimized
when the average resonator energy is maximized. Finally we show that the current noise of the SSET provides
a way of measuring both the linewidth and energy relaxation rate.
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I. INTRODUCTION

When a resonator is coupled to a superconducting single-
electron transistor �SSET� tuned close to the Josephson qua-
siparticle �JQP� resonance the flow of charges can either
damp the resonator motion, potentially leading to cooling,1,2

or pump it3–8 leading to laserlike states of self-sustaining
oscillation, depending on the choice of operating point. Re-
cent experiments using a superconducting stripline resonator
coupled capacitively to the SSET island demonstrated a laser
effect9 whilst the opposite effect of cooling was demon-
strated using a nanomechanical resonator.10 Similar cooling
effects and laserlike instabilities occur close to other trans-
port resonances in the SSET-resonator system,1,3,11 as well as
in apparently rather different systems such as a driven optical
cavity coupled parametrically to a mechanical resonator.12–14

Furthermore, useful analogies can be made5,15,16 with quan-
tum optical systems such as the micromaser where a cavity
resonator interacts with a sequence of two-level atoms.17

The SSET is tuned to the JQP resonance by appropriate
choices of the drain source and gate voltages applied18–20

�see Fig. 1 for a schematic illustration of the JQP cycle�.
Close to the resonance the charge dynamics of the SSET
island is similar to a driven two-level system coupled to a
bath.21,22 Charge is transported through the system via a
combination of coherent tunneling of a Cooper pair and two
successive quasiparticle decay processes. The center of the
resonance occurs when two states of the SSET island differ-
ing by a single Cooper pair, �0� and �2� have the same charg-
ing energy. For operating points where the electrostatic en-
ergy of state �2� is less than that of the �0� state the SSET
tends to emit energy to the resonator.1,2 The decay processes
in the SSET generate a current whose average value and
fluctuations provide a natural source of information about the
dynamics of the resonator.6,11

For sufficiently strong coupling, the energy emitted to the
resonator can lead to a variety of different limit-cycle
states.1,3,15 The existence of the limit-cycle states is shown
clearly in the steady-state properties of the resonator’s den-
sity matrix. However, information about the important dy-
namical time scales of the system such as the resonator line-
width and energy relaxation rate is only obtained by going

beyond the steady state of the system to examine the spec-
trum of fluctuations that occur about this state.

In this paper we use a combination of numerical and ana-
lytical methods to investigate the spectral properties of a
resonator pumped by a SSET tuned close to the JQP reso-
nance. Direct numerical evaluation of the relevant spectra
allows us to obtain both the energy relaxation rate and line-
width of the resonator. We find that except within transition
regions, the peaks in the resonator spectra have a Lorentzian
shape with widths that correspond to the real parts of par-
ticular individual eigenvalues of the system. For weak to
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FIG. 1. �a� Superconducting single-electron transistor: two tun-

nel junctions and a gate capacitor Cg form the SSET island to which
the resonator is coupled capacitively. A drain source voltage, Vds,
and gate voltage, Vg, are used to tune the operating point of the
device. �b� JQP cycle: Cooper-pair tunneling at the left-hand junc-
tion between island states �0� and �2� is interrupted by two quasi-
particle tunneling events which take the island charge back to �0�
via the �1� state.
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moderate couplings the resonator linewidth behaves in a way
that is typical of self-sustained oscillators:23 below threshold
it is simply half the energy relaxation rate of the resonator,
while above threshold, in the limit-cycle regime, it becomes
much narrower. We show that the linewidth in the limit-cycle
regime is set by the phase-diffusion rate of the system in a
way that is similar to a laser.24 For sufficiently strong cou-
pling we find that a more complex behavior emerges and the
operating points �of the SSET� at which the linewidth is
narrowest no longer correspond to the point where the reso-
nator energy is maximized, an effect which was also seen in
a recent study of a very similar system.7 We further show
that the full current noise spectrum of the SSET gives direct
access to the energy relaxation rate11 and, within a limit-
cycle state, the phase-diffusion rate of the resonator.

This work is organized as follows. Section II is devoted to
the simple model we use to describe the SSET-resonator sys-
tem and the methods used in its solution. We begin by out-
lining the Born-Markov master equation for the system, in
which the evolution of the reduced density matrix is given by
a Liouvillian superoperator, and then summarize the steady
state properties of the resonator. Next we describe the
method used to calculate the resonator spectra numerically.
In Sec. III we give the numerically calculated fluctuation
spectra of the resonator. Following a characterization of the
features observed we go on to show how the eigenvalues of
the Liouvillian matrix can be used to obtain the widths of the
peaks observed in the spectra. The calculation of the eigen-
values is significantly less challenging numerically than a
full calculation of the spectra, allowing us to then investigate
the behavior of the linewidth for a range of coupling
strengths. To understand the observed behavior of the line-
width we make use of an analytical approximation in Sec. IV
and thereby link the eigenvalues to the relevant physical pro-
cesses in the system. Finally, in Sec. V we show that the
current noise spectrum of the system can be used to measure
the linewidth and energy relaxation rate of the resonator. We
present our conclusions in Sec. VI and the Appendix con-
tains additional details of the analytical calculations.

II. MODEL

A. Master equation

The Born-Markov master equation describing the evolu-
tion of the reduced density matrix, ��t�, of the SSET and
resonator in the vicinity of the JQP resonance is given by4,15

�̇�t� = −
i

�
�Hco,��t�� + Lqp��t� + Ld��t� = L��t� . �1�

The first term describes the coherent evolution of the density
matrix under the Hamiltonian Hco,

Hco = �E�2��2� −
EJ

2
��0��2� + �2��0�� +

p2

2m
+

1

2
m�2x2

+ m�2xsx��1��1� + 2�2��2�� , �2�

where �E is the detuning from the JQP resonance and EJ is
the Josephson coupling energy. The resonator has frequency

�, effective mass m, momentum operator p, position opera-
tor x, and xs parameterizes the SSET-resonator coupling
strength. The second and third terms of Eq. �1� describe the
dissipative effects of quasiparticle tunneling and the resona-
tor’s environment, respectively,

Lqp��t� = ��0��1���t��1��0� + ��1��2���t��2��1�

−
�

2
��1��1� + �2��2�,��t�	 , �3�

Ld��t� = −
�extm�

�

next +

1

2
�†x,�x,��t��‡ −

i�ext

2�
�x,�p,��t�	� ,

�4�

where � is the quasiparticle tunneling rate and �· , ·	 is the
anticommutator. The effects of the resonator’s environment
are parameterized by the external damping rate �ext and the
thermal occupation number next= �e��/kBText−1�−1 with Text
the temperature. We have neglected the �weak� dependence
of � on the position of the resonator and the difference in the
tunneling rates of the two quasiparticle decay processes.15

For the numerical analysis of the system we use a Liou-
ville space representation,25–29 following the notation intro-
duced in Ref. 6. The Liouvillian,6,30 L, appearing in Eq. �1�,
can be expressed in terms of an eigenvector expansion,

L = �
p=0

	


p�rp����lp� , �5�

where �rp�� are the right-hand eigenvectors, ��lp� the left-hand
eigenvectors, and 
p the associated eigenvalues. The steady-
state density matrix in Hilbert space �ss is equivalent to the
right-hand eigenvector in Liouville space corresponding to
the eigenvalue 
0=0, i.e., �ss⇔ �r0��. Multiplication on the
left by ��l0� is the equivalent of the Hilbert space trace
operation,28 ��l0 ���t���=Tr���t��.

An appropriate truncation of the oscillator basis allows
Eq. �1� to be solved numerically to find the relevant eigen-
values and eigenvectors of L. We do this by using the MAT-

LAB implementation of the ARPACK linear solver.31 In order
to use a large number of resonator states we neglect the parts
of the density matrix corresponding to coherences involving
the �1� state since these are decoupled from the charge states
of the system.15 Additionally we make the approximation
that the coherence between resonator energy levels with a
large separation in energy can be neglected.6,11

B. Steady-state behavior

We now briefly review the steady-state properties of the
resonator as a function of the dimensionless coupling

strength �=
m�2xs

2

eVds
and the detuning �E as this will provide

important points of reference for the study of the spectral
properties in the following sections. For concreteness we fo-
cus our analysis on the regime of a high-frequency resonator
in comparison to the relaxation time of the SSET �����,
which is achievable in experiments using a superconducting
stripline resonator.9 This complements previous work on the
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low-frequency regime,1,3 although we note that our methods
are also suitable for a slow resonator. For this kind of reso-
nator the temperature can be sufficiently low for thermal ef-
fects to be unimportant and so we take next=0 throughout.
We also choose to work in a regime where the Josephson
coupling is relatively weak compared to the quasiparticle
decay rate and hence we take �=Vds /eRJ. We use a value for
the Josephson energy of EJ=1 /16eVds, with a junction resis-
tance RJ=h /e2. Working in this regime has the advantage
that it is also possible to develop an approximate analytical
description of the dynamics.15,32 Furthermore, when the qua-
siparticle decay rate is relatively large this should be the
dominant source of dephasing for the SSET island charge
and so we do not need to consider additional environmental
effects.

When ��� the interaction between the SSET and reso-
nator is quite weak except for near values of �E where there
is a matching of the eigenenergy of the SSET to the energy-
level separation in the resonator,

k�� =  �E2 + EJ
2, �6�

where k is a nonzero integer and the sign should match the
sign of �E. For �E�0 �k�0� these resonances correspond
to the transfer of energy from the SSET to the resonator. For
sufficient coupling the resonator is driven into states of self-
sustained oscillations.4

The steady state of the resonator is nicely described by the
distribution P�n�=Tr��n��n��ss�, where �n� is a Fock state of
the resonator. The resonator is said to be in a fixed-point state
when the P�n� distribution has a single peak at n=0. We
define a well-defined limit-cycle state as corresponding to a
P�n� distribution with a peak at n�0 and additionally a
small value for P�0� �for the purposes of plotting we choose
“small” to mean P�0��1�10−5�. Finally we define the tran-
sition region between the two states. In the regimes studied
here this occurs via a continuous transition, starting from a
fixed-point state increasing the coupling � leads first to a
wider P�n� distribution and then the peak in the distribution
moves away from n=0. We define the transition region as
when the peak in P�n� is at n�0 but there is also substantial
weight at P�0� �again we choose P�0��1�10−5�. Although
this particular definition of the transition region is of course
somewhat arbitrary, it nevertheless proves a useful indicator
in what follows. The resonator can display bistable �and mul-
tistable� behavior in this system4 but here we focus only on a
parameter range where this is not the case and the P�n� dis-
tribution only ever has a single peak.

The steady-state properties of the resonator, �n�= �a†a�,
where a is the resonator lowering operator, and Fn
= �n̄2� / �n�, with n̄=n− �n�, are shown in Figs. 2�a� and 2�b�
for varying detunings and coupling strengths. The plots are
centered around the k=−1 resonance �Eq. �6��, which for our
parameters occurs at �E=−1.59eVds. Similar plots were
given in Ref. 6 but here we go to higher coupling. As the
coupling is increased we see that �n� increases on resonance
up to a maximum value for ��0.005 and then decreases. Fn
shows a large peak at the point where the peak in the P�n�
distribution moves from n=0 to n�0 �see Fig. 2�b�, Ref. 6�.
The value of Fn drops as the coupling is increased further

and the system develops a well-defined limit-cycle state. The
value of Fn drops below unity �i.e., becomes sub-Poissonian�
for sufficiently strong coupling ���0.0075 in Fig. 2�b��.

C. Noise spectra of the system

The steady state of a system only gives information about
average quantities. By also calculating noise spectra, further
important information about the dynamics of the system can
be obtained. We define the symmetrized noise spectrum for
the two operators b and b† as

Sb,b†��� = lim
t→	
�

−	

	

d���b̄�t + ��, b̄†�t�	�ei�� �7�

=2R lim
t→	
�

0

	

d���b̄�t + ��,b†�t�	�ei��, �8�

where b̄�t�=b�t�− �b�, �b�=Tr�b�ss�, and R indicates the real
part. The symmetrized noise spectrum has the property
Sb,b†���=Sb†,b�−��. Note that we consider fluctuations about
the steady state of the system represented by the limit t
→	.

For system operators the correlation function can be
evaluated by using the quantum regression theorem �QRT�.
The QRT states that the two-time correlation function can be
written,24

lim
t→	

�b�t + ��b†�t�� = Tr�beL�b†�ss�, � � 0. �9�

In Liouville space this leads to,28

Sb,b†��� = 4R��l0�BR���B†�r0�� , �10�

where B is the Liouville space symmetrized superoperator
whose relation to the Hilbert space operator b is given by,

−1.8 −1.6 −1.4 −1.2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

∆E/eVds

κ

−1.8 −1.6 −1.4 −1.2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

∆E/eVds

κ

0.0348 151 0.487 9.13

(a) (b)

FIG. 2. �Color online� �a� Average resonator energy �n� and �b�
Fano factor Fn, for varying �E and �, with �=10 and �ext=3
�10−4 �we adopt units such that �=1�. Within the inner dashed line
the resonator is in a limit-cycle state, between the two lines it is in
the transition region �as defined in the text� and elsewhere it is in a
fixed-point state.
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B���t��� ⇔
1

2
�b��t� + ��t�b� , �11�

and we define the pseudoinverse of the Liouvillian,

R��� = W�− i� − L�−1W , �12�

with W an operator that projects away from the steady state
of the system, W�1− �r0����l0�. The matrix formulation,
given in Eq. �10�, is used to numerically evaluate the noise
spectra in the next section.

We can obtain helpful approximations and considerable
insight into how the resonator dynamics affect the noise by
performing an eigenfunction expansion of the Liouvillian
�Eq. �5�� in R��� to obtain the alternative form for the spec-
trum,

Sb,b†��� = 4R��
p=1

	
1

− i� − 
p
��l0�B�rp����lp�B†�r0���

= − 4�
p=1

	
R�
p�R�mB

p� − �J�
p� + ��J�mB
p�

R�
p�2 + �J�
p� + ��2 ,

�13�

where mB
p = ��l0�B�rp����lp�B†�r0��. In almost all the cases con-

sidered here mB
p turns out to be real and each term in the sum

corresponds to a Lorentzian. However, in the case of the
current noise we find that J�mB

p��0, leading to a somewhat
more complex line shape,32 a point which we discuss further
in Sec. V.

A knowledge of the eigenvalues of the system tells us
where we can expect features in the spectra and how wide
these features are. For the two separate systems of a damped
oscillator and the SSET near the JQP resonance the eigen-
values are easily obtained. The eigenvalues for an oscillator
coupled to a thermal bath are,17


 = − im� − 
l +
1

2
�m���ext

l = 0,1,2, . . .

m = 0,  1,  2, . . .
�14�

The eigenvalues of the SSET do not have such a simple
analytic form. For small EJ, the nonzero eigenvalues consist
of a conjugate pair with a real part �−� /2 and imaginary
parts close to the SSET frequency �SSET=�E2+EJ

2 /�, with
the others real and of order −�. In the limit of zero coupling,
the eigenvalues of the combined system will just be the sum
and difference of these eigenvalues.

III. SPECTRAL PROPERTIES OF THE RESONATOR

The first resonator spectrum we consider is

Sa,a†��� = lim
t→	
�

−	

	

d���ā�t + ��,a†�t�	�ei��

= 4R��l0�AR���A†�r0�� , �15�

where A���t���⇔ 1
2 �a��t�+��t�a�. The width of the peak that

appears at the resonator frequency in this spectrum is the
resonator linewidth, ��. For a superconducting stripline reso-

nator this spectrum can be inferred by probing the field that
leaks out of the resonator24 �e.g., via capacitive coupling to a
transmission line9�, but here we will focus instead �in Sec. V�
on how the current noise spectrum can be used to obtain the
resonator linewidth. For a resonator coupled only to a ther-
mal bath this spectrum consists of a single Lorentzian peak
at the frequency of the resonator with a width given by half
the energy relaxation rate which in this case is simply �ext /2.

The behavior of Sa,a†��� for �E detuned away from the
center of the k=−1 resonance �Eq. �6�� �where the resonator
is in a fixed-point state� and at the resonance �with � such
that the system is just inside the region where a well-defined
limit-cycle exists� is shown in Figs. 3�a� and 3�b�, respec-
tively. For the off-resonant case, peaks are observed at �
=0, ���, ���SSET, ���−�SSET, and ��−�+�SSET.
When at resonance we also observe the appearance of addi-
tional peaks at higher multiples of the resonator frequency.
Also note that the peaks involving the SSET frequency have
a much larger width since ���ext.

The spectra are dominated by the peak near to the fre-
quency of the resonator, which is shown in detail in the in-
sets. In each case the position of the peak is shifted slightly
from the bare frequency of the resonator due to a renormal-
ization arising from the interaction with the SSET. In both
cases the peak remains Lorentzian. By comparing these two
plots alone we see that the linewidth is much narrower for

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

lo
g 1

0
[S

a
,a

†
(ω

)]

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

−5

0

5

10

ω/Ω

lo
g 1

0
[S

a
,a

†
(ω

)]

(b)

−1 0 1
0

2

4

ω/Ω−1

−1 0 1
0

0.5

1

1.5

ω/Ω−1

× 104

× 109

× 10−4

× 10−6

FIG. 3. �Color online� Resonator spectrum Sa,a†��� for �
=0.003 �other parameters are the same as in Fig. 2�. �a� Off-
resonance �E=−1.75eVds, �SSET=1.1 � on a log10 scale, �b� on-
resonance �E=−1.59eVds, �SSET=� on a log10 scale. The insets
show the behavior around the peak at ��� without logarithmic
scaling �full lines� along with Lorentzian fits to the peaks �dashed
lines�.
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the resonant case. The spectra are shown for a relatively
small value of � but for increased coupling similar features
are observed.

We also calculate the spectrum of energy fluctuations in
the resonator,

Sn,n��� = lim
t→	
�

−	

	

d���n̄�t + ��, n̄�t�	�ei��

= 4R��l0�NR���N�r0�� , �16�

where N���t���⇔ 1
2 �n��t�+��t�n�. For a resonator alone this

spectrum consists of a single peak at �=0 with a width, �n,
given by the energy relaxation rate ��ext in this case� and
height 4�n̄2� /�ext. For the coupled system the peak at �=0 is
found to be Lorentzian to a very good approximation in both
the limit-cycle and fixed-point regimes but not within the
transition region. We show in Sec. IV that the width of this
peak, �n, is still given by the energy relaxation rate of the
resonator in both the limit-cycle and fixed-point states.

The behavior of the resonator linewidth, ��, and the rate
�n obtained from Lorentzian fits to the appropriate spectral
peaks are shown as a function of �E in Fig. 4. The behavior
far from resonance is well understood: the resonator remains
in the fixed-point state and the SSET acts on it like an effec-
tive thermal bath1,2,6,33 leading �for �E�0� to a reduction in
the energy relaxation rate and an increase in the effective
frequency of the resonator. Thus one expects that in this
regime the resonator linewidth should be equal to �n /2, as
we find. Close to the center of the resonance where the reso-
nator is in a well-developed limit-cycle state there is a strong
suppression of the linewidth, whilst the energy relaxation

rate remains much larger. This behavior is precisely what one
expects for a self-sustained oscillator.23

The fact that a given spectrum can be expressed in terms
of the eigenfunction expansion of the Liouvillian as a sum of
Lorentzians �Eq. �13�� suggests that where the spectral peaks
are found to be Lorentzian a single term in the expansion
should dominate and the peak width be given by a single
eigenvalue. Considering first the spectrum of energy fluctua-
tions, Sn,n���, we note that since this is the Fourier transform
of the correlation function �n�t+��n�t��, we expect the places
where �n̄2� and Sn,n��� can be captured by a single term in
the eigenfunction expansion to be closely related. In the
fixed-point and limit-cycle states �but not the transition re-
gion� the first term in the eigenfunction expansion describes
the variance in the resonator energy rather well6 �n̄2�
���l0�N�r1����l1�N�r0��, where the corresponding eigenvalue

1 is the smallest nonzero one. The single term approxima-
tion to the spectrum is,

Sn,n��� � 4R� 1

− i� − 
1
��l0�N�r1����l1�N�r0���

�
4�− 
1��n̄2�

�2 + 
1
2 . �17�

The validity of this expression is confirmed in Fig. 4 where
we compare the eigenvalue 
1 and �n and find excellent
agreement except within the transition region, where the �
=0 peak is not well described by a Lorentzian and further
terms in the eigenfunction expansion are required.

For Sa,a† it is expected that the eigenvalue closest to
−i� is the most important �this is certainly true for the de-
coupled system�. We denote this eigenvalue 
�. For the
eigenfunction expansion of the steady-state quantity ��ā ,a†	�
we find that �for fixed-point and limit-cycle states and also
in the transition region for weak coupling� the term
corresponding to the 
� eigenvalue dominates, i.e., 1

2 + �n�
���l0�A�r�����l��A†�r0��. Thus we expect that the spectrum
around �=� should be well approximated by,

Sa,a†��� �
4�− R
��
�n� +

1

2
�

�� − �R�2 + �R
��2 , �18�

where �R is the renormalized frequency of the resonator,
which is given by the imaginary part of the eigenvalue, �R
=−J�
��. The comparison of �� with R
� in Fig. 4 shows
convincing agreement.

The calculation of the eigenvalues is much less numeri-
cally intensive than the calculation of the full spectrum, al-
lowing us to calculate the linewidth for a large range of
parameters. In Fig. 5�a� we show the value of ��, as deter-
mined from the 
� eigenvalue, for the same range of param-
eters as Fig. 2. For weak coupling �� decreases with increas-
ing �n� and hence the maximum in �n� corresponds to a
minimum in the linewidth. This behavior is analogous to that
seen in a laser where the linewidth above threshold is given
by the rate of phase diffusion,24 ��

laser= G
8�n� , where G is the

gain. However, a more complex behavior is apparent close to
resonance for ��0.005, where �n� decreases with increasing
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γn/2
−λ1/2
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−�λΩ

FIG. 4. �Color online� Width of zero-frequency peak in the
Sn,n��� spectrum �upper curves� as determined from a Lorentzian fit
��n /2, solid line� and from the smallest nonzero eigenvalue �−
1 /2,
dashed line�. The lower curves show the linewidth of the resonator
as determined from a Lorentzian fit to Sa,a†��� ���, solid line� and
from the eigenvalue �−R
�, dashed line�. �=0.003 with other pa-
rameters the same as in Fig. 2. Vertical dashed lines indicate the
transition region.
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� �see Fig. 2� and the �single� maximum in �n� now corre-
sponds to a local maximum in �� with minima on either
side.

The behavior of �� manifests itself in the height of peak
at ��� in Sa,a†���, which from Eq. �18�, is �4�n� /��

��n��1 in the limit cycle�. The height of this peak as a
function of �E initially shows a single maximum at �E=
−1.59eVds, which splits into a pair of maximas �with a mini-
mum between� as the coupling is increased. Similar behavior
was observed in the emission spectrum of a stripline resona-
tor coupled to a SSET in a recent experiment.9 However, this
experiment was in a rather different parameter regime to the
one considered here �EJ���� and in the experiment there
were accompanying features in the current, which we do not
obtain here. A double peak in the spectral maximum as a
function of the detuning from resonance was also predicted
in the emission spectrum for a closely related system in Ref.
7. In contrast to the linewidth, the energy relaxation rate �n
shown in Fig. 5�b� shows a similar behavior to that shown in
Fig. 4 for all the values of � plotted.

IV. ORIGIN OF THE PEAK WIDTHS

We have shown that the widths of the peaks in the noise
spectra are related to the eigenvalues of the Liouvillian, and
that when the peaks are Lorentzian, the widths are given by
a single eigenvalue corresponding to the dominant noise pro-
cess. In this section we identify the eigenvalues with physi-
cal processes by comparing them to analytic expressions that
describe those processes.

We first consider �n, the width of the �=0 peak in
Sn,n���. We do not expect the correlation function of n to
depend on phase, and so in Sec. III we identified this term as
the energy relaxation rate. This is supported by the fact that
this term reduces to �ext in the zero-coupling limit. It is well
known that when the resonator is in a fixed-point state, the
energy relaxation rate is given by the sum of the external

damping and an additional effective damping due to the
SSET,1,2 and indeed we find that when the resonator is in a
fixed-point state, �n is well approximated by this total damp-
ing rate. We will now go on to show that �n also corresponds
to the energy relaxation rate in the limit cycle.

In a limit cycle, the effective damping can be generalized
to obtain an amplitude-dependent damping1,3,15,33 �eff�E�,
where E��n� is the average energy. The calculation, which
is described in Ref. 33, proceeds by deriving a set of Lange-
vin equations for the SSET and resonator operators. Assum-
ing then that the resonator energy relaxes much more slowly
than the SSET charge, the problem can be separated into two
parts �though at the cost of neglecting some of the SSET-
resonator correlations�. Firstly the SSET charge dynamics
can be solved by treating the resonator as a harmonic drive
with a fixed amplitude. The driven charge response as a func-
tion of the resonator amplitude is then used to obtain an
effective Langevin equation for the resonator alone.33 Writ-
ing down the corresponding equation for the average ampli-
tude of the resonator leads immediately to the effective
damping, an expression for which �valid in the limit EJ���
is given in the Appendix. The average energy of the resona-
tor obeys the equation of motion,

dE

dt
= − �T�E�E , �19�

where �T�E�=�ext+�eff�E� is the total damping rate. Al-
though this equation is nonlinear, for small fluctuations about
a stable limit cycle with average energy E0 �given by
�T�E0�=0� we can linearize this equation to obtain,

dE

dt
� − �lin�E − E0� ,

�lin =�E0
d��E�T

dE
�

E=E0

, �20�

where �lin is the linearized damping, which gives the energy
relaxation rate of the resonator near to a stable limit-cycle
solution. The same approach also allows us to calculate the
renormalized frequency of the resonator, �R �as we discuss
in the Appendix�.

The calculation of �eff�E� requires15,33 approximations in
which certain correlations between the resonator and the
SSET are dropped. Not surprisingly, this approach does not
capture all of the coupled dynamics of the system and, in
particular, it does not describe the small shift in the SSET
frequency which arises due to the coupling to the resonator.
This SSET frequency shift is apparent in the plot of �n� in
Fig. 2�a�, where there is a clear change in the position of the
peak as the coupling is increased �since this shift is much
larger than �R−�, it can be attributed to a shift in �SSET�.
The shifted frequency of the SSET can be obtained from a
calculation which includes more of the SSET-resonator cor-
relations �for example, from the shift in the SSET eigenval-
ues within the second-order mean-field equations described
in Ref. 6�, or simply from the precise location of the peaks in
the current noise spectrum of the SSET �Sec. V�. In Fig. 6
we compare �n obtained numerically �from the Liouvillian
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FIG. 5. �Color online� Widths of spectral peaks calculated
from the eigenvalues as a function of � and �E. �a� log10����, the
logarithm of the linewidth of Sa,a†���. �b� �n, the width of the
zero-frequency peak in Sn,n���, �other parameters and lines are as in
Fig. 2�.
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eigenvalue 
1� to �lin plotted against �E renormalized to take
into account the shift in �SSET �for low EJ and high �, the

required renormalization is well approximated by �Ẽ��E
+2�eVds�. We find good agreement for these parameters
which confirms that our identification of �n as the energy
relaxation rate is indeed valid. The small difference between
the curves in Fig. 6 arises because the expression for �lin is
strictly only valid in the small EJ limit; we find that a smaller
value of EJ improves the agreement.

We now consider ��, the width of the �=� peak in
Sa,a†���. In the fixed-point regime, we find that ����n /2,
i.e. this width is also determined by the energy relaxation
rate—indicating that the dominant fluctuations of a are en-
ergy fluctuations in this regime. However, in the limit-cycle
regime where the energy fluctuations are small there is an
additional process by which a can fluctuate, namely, phase
diffusion. The linewidth in a laser is determined by this
phase-diffusion rate24,34 and we shall now show that this is
also the case for the SSET-resonator system.

Mapping the effective Langevin equation for the
resonator33 onto a c-number equation,35 we then follow the
approach of Lax,23,34 and derive effective equations of mo-
tion for the phase and amplitude. The calculation follows
very closely that described in Ref. 36 where the phase-
diffusion rate of a resonator coupled to a driven cavity is
obtained. The effective amplitude and phase equations con-
tain terms representing fluctuations arising from both the en-
vironment and the SSET island charge. These fluctuations
�calculated in Ref. 33 and summarized in Appendix� lead to
effective diffusion terms for the amplitude �Deff

− � and phase
�Deff

+ � of the resonator about the limit cycle, where the effec-
tive diffusion constants are valid on time scales long com-
pared to the resonator period, but short compared to the
damping rate.

We find36 that as well as the direct phase diffusion Deff
+ ,

we must also take into account another mechanism of phase
diffusion. The frequency shift ��=�R−� depends on the
amplitude, so any change in amplitude will lead to a change
in frequency.3 This means that a term describing amplitude
fluctuations appears in the equation of motion of the phase
and thus there are both direct and indirect contributions to
the phase diffusion.

We combine the terms arising from direct phase diffusion
and the contribution from amplitude fluctuations �neglecting
cross correlations� to obtain the total linewidth ��=��

�+��
n ,

�� =
Dext + Deff

+ �E�
4�n�

+ 
�lin

�lin
�2Dext + Deff

− �E�
�n�

, �21�

where �lin=�E0
d���E�

dE �E=E0
is the frequency shift linearized

about the limit cycle and Dext=
�ext

2 at zero temperature. In
Fig. 7 we compare �� with the numerically obtained result
for the linewidth from the eigenvalue, ��. We see that near
to the center of the resonance the indirect diffusion term
tends to zero but it contributes significantly when the system
is not exactly on resonance.

Looking at Fig. 7 we see that the double-peak structure
seen in �� at strong couplings arises from the combination of
the maximum in ��

� at the center of the resonance and the
strong increase in ��

n off-resonance. At weaker couplings the
limit-cycle regime becomes much narrower as a function of
�E. Here we find that the combination of a less pronounced
maximum in ��

� and a much sharper minimum in ��
n together

lead to a single minimum in ��.
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FIG. 6. �Color online� Comparison of the width of the zero-
frequency peak in Sn,n���, as given by the eigenvalue �n��E� �solid

line�, with the energy relaxation rate �lin��Ẽ� �dashed line�. Here
�=0.03, with other parameters the same as in Fig. 2.
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FIG. 7. �Color online� Comparison of the linewidth �� of
Sa,a†��� obtained from the 
� eigenvalue �plotted as a function of
�E� with the analytic expression ��=��

�+��
n �plotted as a function

of �Ẽ�. Also shown are the direct ���
�� and indirect ���

n � phase-
diffusion contributions. Here �=0.03 with other parameters the
same as in Fig. 2.
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V. CURRENT NOISE

In this section we investigate the extent to which features
in the resonator noise spectra from Sec. III manifest them-
selves in the current noise. The low-frequency limit of the
current noise in this system was discussed in Ref. 6 but here
our interest is in the dynamical time scales which become
imprinted in the widths of the peaks in the finite-frequency
current noise. The finite-frequency current noise through the
SSET can be split into contributions from the current noise at
the two junctions and the charge noise of the island,37

SI,I��� =
1

2
SIL,IL

��� +
1

2
SIR,IR

��� −
1

4
�2SQ,Q��� , �22�

where we have assumed equal junction capacitances. We
choose the Cooper-pair tunneling to take place at the left-
hand junction. To calculate the charge noise and the current
noise at the left-hand junction we can again use the quantum
regression theorem as described in Sec. II C,

SIL,IL
��� = 4R��l0�ILR���IL�r0�� ,

SQ,Q��� = 4R��l0�QR���Q�r0�� , �23�

where the current and charge operators are defined as

IL = ie
EJ

�
��2��0� − �0��2�� ,

Q = e��1��1� + 2�2��2�� �24�

and the superoperator forms are defined in the same manner
as Eq. �11�. For the current noise at the right-hand junction a
counting variable approach can be used.38 The resulting ex-
pression is very much the same but with the addition of a
self-correlation term,

SIR,IR
��� = 2e��l0�IR�r0�� + 4R��l0�IRR���IR�r0�� , �25�

where the current superoperator for the right-hand junction is
defined,

IR���t��� = e���0��1���t��1��0� + �1��2���t��2��1�� . �26�

We give results in terms of the current Fano factor, FI���
=SI,I��� /2e�I�. For the SSET alone the current noise spec-
trum, for these parameters, consists of a large peak at �
��SSET and a much smaller peak at �=0.

In Figs. 8�a� and 8�b� we show the current noise spectra
for the same off-resonant and resonant parameters used in
Figs. 3�a� and 3�b�. The SSET current has a nonlinear depen-
dence on the resonator position6 leading to peaks at higher
harmonics39 of �. In the off-resonant regime the resonator
state consists of Gaussian fluctuations about a fixed point and
only the ��2� harmonic is seen in the current noise40,41

and it is very much weaker than the peak at ���. On-
resonance, the resonator motion consists of oscillations of a
�relatively� much larger amplitude and hence leads to clearly
visible peaks at higher harmonics of �.

It is interesting to note that for the peak near ��� the
off-resonant current noise spectrum displays an important
difference from the resonator spectra: as is shown in the inset

�Fig. 8�a�� the peak is not of a Lorentzian form. The non-
Lorentzian shape of this peak in the fixed-point regime can
be understood32 as arising from an extra element of correla-
tion between the SSET and resonator: the SSET current picks
up the fluctuations in the resonator motion which were origi-
nally driven by the SSET charge motion �rather than a totally
uncorrelated external bath�.32 This effect is rapidly reduced
with increasing external damping and temperature. Note that
in the limit-cycle �resonant� region the peak at ��� is
again a Lorentzian.

Nevertheless, we find that the non-Lorentzian peak at �
�� in the fixed-point regime can still be fitted by a term in
the eigenfunction expansion, Eq. �13� �but with a complex
matrix element mB

p�, and hence the parameter describing the
width, R
�,I, can be obtained over the whole range of �E.
Comparing R
�,I obtained in this way with the linewidth ��
and comparing the width of the �=0 peak in SI,I��� with �n
for the parameters in Fig. 4 we find in both cases that the
pairs of curves overlay one another �the resulting plot thus
effectively duplicates that shown in Fig. 4 and hence is not
shown here�. Hence the current noise provides a direct mea-
sure of the spectral properties of the resonator spectra and, in
particular, gives access to the energy relaxation and phase-
diffusion rates.

VI. CONCLUSIONS

We have studied the noise properties of a resonator
coupled to a SSET in the vicinity of the JQP resonance,
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FIG. 8. �Color online� Finite-frequency current noise spectrum
for �=0.003 with the other parameters the same as in Fig. 2.
�a� Off-resonance �E=−1.75eVds, �b� on-resonance for
�E=−1.59eVds. The insets show expansions of the narrow peaks at
��� without logarithmic scaling �full lines� along with fits to the
peaks �dashed lines� with the form of Eq. �13�, inset �a�, and
Lorentzian form, inset �b�.

HARVEY, RODRIGUES, AND ARMOUR PHYSICAL REVIEW B 81, 104514 �2010�

104514-8



focusing our analysis on the case of a resonator whose fre-
quency is large compared to the quasiparticle decay rate. We
analyze the resonator spectrum that includes fluctuations in
both the resonator energy and phase, Sa,a†���, as well as the
spectrum of energy fluctuations Sn,n���. The main feature in
the spectrum Sa,a†��� is a large peak at the resonator fre-
quency, ��� while Sn,n��� is dominated by a peak at �
=0. We find that outside transition regions, these peaks are
Lorentzian with widths, �� �the linewidth� and �n, respec-
tively, which are each controlled by a single eigenvalue of
the Liouvillian. Examining the behavior of these eigenvalues
for a range of coupling strengths, we find that for large
enough coupling 
� has a double minimum as a function of
the detuning from resonance. An analysis of the coupled dy-
namics of the system allows us to identify the peak width �n
with the energy relaxation rate and �� �within the limit-cycle
regime� with the phase-diffusion rate. We show that the
double minimum in the linewidth arises from a combination
of direct and indirect phase diffusion. Finally, we show that
these rates can be extracted from the current noise, and thus
the current noise provides a direct measure of the key dy-
namical time scales of the resonator.
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APPENDIX: ENERGY-DEPENDENT DAMPING AND
DIFFUSION

In this appendix we present further details on the analyti-
cal approximations used to obtain the effective damping and
diffusion rates. The details of the methods used in the calcu-
lations �and the approximations required� can be found in
Refs. 33 and 36. Although the expressions obtained are only
valid for small Josephson energy, EJ���, they are valid for
all values of � /�, i.e., for both fast and slow resonators. The
basis of the calculation is that the resonator energy is as-
sumed to relax very slowly compared to both the resonator
period and the quasiparticle tunneling rate, so that its effect
on the SSET charge can be approximated as a harmonic
drive. The behavior of the SSET under the influence of this
drive is then found, and the result then fed back to obtain a
coarse-grained equation of motion for the resonator.

The effective damping, �eff, and frequency shift, ��
=�R−�, for a resonator with average �real� amplitude E
are given by,33

�eff�E�
2

+ i���E� = i
xs��2EJ

2�2

xq�eVds�22E

�3� − 2i��
�� − i��2

� �
n

Jn�z�J1+n�z�
 1

hn
−

1

h−n
� � ,

�A1�

where xq=� / �2m��, the Bessel function of the first kind,

Jn�z� is a function of the scaled amplitude z=2Exs /xq, and
we define hn= �

2 + i��n+�E /��.
In a similar way, the fluctuations of the charge on the

SSET �Ref. 33� lead to effective diffusion constants for the
amplitude and phase of the resonator.36 The details of the
calculation are rather involved and the calculation follows
the same approach as that given in Ref. 36 hence here we
merely summarize the results. The total diffusion rate is

given by Deff
 =

EJ
2�4

�eVds�2 �3��R�D1
+D2

+D3
�, where Deff

+ re-
fers to the phase diffusion and the Deff

− terms to the amplitude
diffusion. The first term is

D1
 =

1

2�
n

�Jn+1�z�C1  Jn−1�z�C1
��2

�hn�2
,

where

C1 =
3� + 2i�

�� + i��2 .

The second term is given by

D2
 = �

n

�Jn+1�z�C1  Jn−1�z�C1
��

hn
�

� � Jn+1�z�C2
�

hn+1
� 

Jn−1�z�C2

hn−1
� �

with

C2 =
2� + i�

�� + i��2 .

The final term is given by

D3
 = �

n

C3

�
Jn

2�z�
 1

hn
� +

1

hn
�


C4

�
Jn−1�z�Jn+1�z�
 1

hn−1
� +

1

hn+1
� ,

where

C3 =
5�2 + 2�2

��2 + �2�2 ,

C4 =
�C2

2

� + i2�
+

�2

�� + i��2�� + i2��2 .

The effective damping and diffusion can now be used to
calculate the linewidth. These quantities can in addition be
integrated to give an effective potential, allowing a calcula-
tion of the resonator distribution.36 We note that this result
generalizes the phase-diffusion rate calculated in Ref. 3 to
the regime where � /� is no longer small.
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